

STRATEGIC FRAMEWORK COMMITTEE

March 28, 2018, 4:30PM Chancellor's Ballroom East, Carolina Inn

OPEN SESSION

FOR INFORMATION ONLY

(No formal action is requested at this time)

- 1. Chair's Remarks

 Julia Grumbles, UNC-CH Board of Trustees
- 2. Creativity Hubs

Terry Magnuson, Vice Chancellor for Research

- UNC's Evryscope: A Watchful Eye on the Entire Sky Nick Law, Assistant Professor, Physics & Astronomy
- From Molecules to Organisms: Pushing the limits of Fluorescence Microscopy
 Wesley Legant, Assistant Professor, Pharmacology and Biomedical Engineering

COMMITTEE MEMBERS

Julia Sprunt Grumbles, Chair Kelly Matthews Hopkins, Vice Chair Jefferson W. Brown W. Lowry Caudill Allie Ray McCullen Hari H. Nath

Administrative Liaison:
Bob Blouin, Executive Vice Chancellor and Provost
Judith Cone, Vice Chancellor for Innovation, Entrepreneurship, & Economic
Development

UNC's Evryscopes: Watchful Eyes on the Entire Sky

Nicholas Law

Assistant Professor

Dept of Physics and Astronomy

University of North Carolina, Chapel Hill

The dynamic sky

Standard sky surveys: tiling across the sky

PTF supernova survey: Law et al. 2009

PTF supernova survey: Law et al. 2009

White dwarf transits

Exoplanet habitability & flares

The Evryscope ("wide-seer")

One Evryscope Image

One Evryscope Image

I% of Evryscope field of view

Bright Southern eclipsing binaries

Bright Southern eclipsing binaries

Evryscope DB sky coverage

~I billion photometric measurements per night Total imaging data ~IPB/year.

The Evryscopes

Building Evryscope-North

Building Evryscope-North

Optimizing sky area instead of telescope size

New planet candidates

PROMPT array
6 1/2m telescopes

4m SOAR
Spectrographs &

Evryscope: the first all-sky gigapixel telescope

One of the largest optical telescopes in the world

New planet candidates

Planets and orbits to scale

NASA

Spare slides

Milky Way Galaxy

From molecules to organisms: pushing the limits of fluorescence microscopy

Wesley R. Legant
Departments of Pharmacology and BME
University of North Carolina, Chapel Hill

Animated Cell Biology – From Diagrams to Movies

Walczak C.E., et al., Int Rev Cytology 2008

actin cortex lamellipodium substratum actin polymerization at cortex under tension plus end protrudes lamellipodium movement of unpolymerized actin myosin II contraction focal contacts (contain integrins)

Molecular Biology of the Cell 2002

Alcover et al. 2018

Cell Division

Cell Migration

Immune Function

Imaging Cell Division

Walczak C.E.. et al., Int Rev Cytology 2008

normal

Imaging Cell Division

Walczak C.E.. et al., Int Rev Cytology 2008

abnormal

Imaging Cell Division

Applications

Collaborations

Protein Specific Live Cell Fluorescence Imaging

Shimomura, Chalfie, & Tsien

1994: green fluorescent protein

2008: Chemistry Nobel

microtubule ends

endoplasmic reticulum

golgi, mitochondria

Technology truly enabled by the Nobel Prizes of 2008 and 2009 (GFP and CCDs)

Challenge - Phototoxicity, Background, Speed

Lattice Light Sheet Microscopy

Chen BC.*, Legant W.R.*, Wang K.* et al., Science 2014

Lattice Light Sheet vs. Commercial Spinning Disc

. Harvard Medical School

Summary

Lattice light sheet microscopy

(Chen BC*, Legant WR*, Wang K* et al. Science, 2014)

- reduced background fluorescence
- less photodamage

- Full documentation, parts lists, software via RLA through HHMI
- >80 licensees, 5 continents, >30 clone instruments
- 3 patents, commercially licensed

HHMI Janelia Research Campus

Kai Wang

Bi-Chang Chen

Wesley Legant

Applications

Collaborations

How do cells migrate through three-dimensional space?

- development, wound healing

HL-60 cell
mCherry - utrophin FITC - collagen

- cancer metastasis
- immune function
- Biochemistry
 - parts list
 - interactions
 - functions

Current Models of Cell Migration

2D imaging of cells in culture

Quantitative Measurements of the 3D Cellular Gait

3D imaging of cells on glass

3D imaging of cells in model matrices

HL-60 cell
mCherry - utrophin FITC - collagen

3D imaging of cells in vivo

Liu TL. et al. submitted 2018

lattice light sheet + adaptive optics

lattice light sheet

lattice light sheet + 3D cell culture

Applications

Collaborations

How do immune cells target diseased/infected cells in the body?

- Infectious disease
- cancer immunotherapy
- 714 active/recruiting/pending clinical trials for cancer immunotherapy in the USA¹
- 35 clinical trials currently at UNC
- 10 year timeline is estimated \$30-75 billion in sales²
- Not all patients respond and it's often unknown why

How does the specialized structure between a T-cell and target cell form?

- 1) clinicaltrials.gov
- 2) Park A., "What if your immune system could be taught to kill cancer?" Time Magazine, 3/24/2016

Imaging the Immune Synapse

https://research.pasteur.fr/en/project/intracellular -vesicle-traffic-drives-immunological-synapseformation-and-t-cell-activation-inhibition-byhuman-immunodeficiency-virus-hiv-1/

Chen BC.*, Legant W.R.*, Wang K.* et al., Science 2014

University of Cambridge

Gillian Griffiths

Wesley Legant

Alex Ritter Jennifer Lippincott-Schwartz

Imaging the Immune Synapse

Ritter A. et al., Immunity 2015

Imaging the Immune Synapse

Ritter A. et al., Immunity 2015

Applications

Collaborations

Animated Cell Biology – from Diagrams to Movies

Walczak C.E.. et al., Int Rev Cytology 2008

Molecular Biology of the Cell 2002

Alcover et al. 2018

Quantitative Imaging – from Movies to Diagrams

Code modified from Applegate K.T. et al. J Struct Biol, 2011

Ritter A. et al., Immunity 2015

Acknowledgements

Dan Milkie

Janelia Research Campus

As of January 2018

Joint Department of

BIOMEDICAL ENGINEERING

http://legantlab.org

NC STATE UNIVERSITY