

Engaging Tomorrow's Scientists

Transforming Instruction in Large Lecture Courses

Kelly A. Hogan Senior Lecturer Director of Instructional Innovation Department of Biology

> Michael T. Crimmins Mary Ann Smith Distinguished Professor Co-Director, AAU Project Site Department of Chemistry

Board of Trustees Meeting University of North Carolina at Chapel Hill September 25, 2014

Nationally, what percentage of students who enter college intending to major in a STEM field *actually* graduate with a STEM degree?

- a.80 90%
- b.70 79%
- c. 60 69%
- d.50 59%

- e.40 49%
- f. 30 39%
- g. 20 29%
- h.10 19%

Nationally, what percentage of students who enter college intending to major in a STEM field *actually* graduate with a STEM degree?

e. 40%

What percentage of students who enter *Carolina* intending to major in a STEM field *actually* graduate with a STEM degree?

- a.80 90%
- b.70 79%
- c. 60 69%
- d.50 59%

- e.40 49%
- f. 30 39%
- g. 20 29%
- h.10 19%

What percentage of students who enter *Carolina* intending to major in a STEM field *actually* graduate with a STEM degree?

What do you think should be the success rate of earning degrees for students intending to major in a STEM field **at Carolina**? Why?

Discuss with your neighbor.

a.90% b.80% c.70%

- d. 60%
- e.I need more information

D/F rates in Introductory STEM courses at UNC: 2007-2008

Biology 101: Principles of Biology

Traditional:

• Lecturing, exams

High Structure, Active Learning format:

- Pre class guiding reading assignments
- Pre class reading assessments
- Formative clicker questions during class
- Undergraduate mentors
- Group help sessions 4 times per week
- In class problem solving activities, modeling, drawing, peer discussing
- Summarizing and explaining (not lecturing)

Biology 101

These model predictions use student data for males in same term (Spring), with a combined SAT math and reading score of 1257 (the mean score across the 6 terms).

Performance increased disproportionately for some students

Eddy, S. L.; Hogan, K. A. CBE Life Sci. Ed. 2014, 13, 453-468

<u>**Goal</u>**: Transition large lecture format courses in Biology, Chemistry and Physics into high-engagement, student-centered learning environments.</u>

Technique: Create inter- and intradisciplinary "mentor-apprentice" networks to facilitate the transfer of these techniques from experienced instructors to less experienced peers.

Strategies:

- 1) course release time to learn and implement new methods;
- 2) department-level faculty learning communities to support redesign of gateway courses;
- *3) college-level faculty learning communities* for exchange of best practices and support across departments.

Chemistry 261: Organic Chemistry I

Traditional: Rock on rock (chalk on blackboard) or powerpoints and lecture

High Structure, Active Learning format:

- Weekly online homework assignments
- In class quizzes at the beginning of every class
- Formative clicker questions during class
- Undergraduate mentors
- Coordinated content, schedule, and help sessions for three sections
- In class problem solving activities
- Some lecture (summarizing, explaining)
- Approximately **80** Videos available for viewing

Biology 101: 40% reduction to date

Chem 261: Early results >50% reduction

Acknowledgements

- Center for Faculty Excellence
- College of Arts and Sciences Dean's Office
- Provost's Office
- Office of Institutional Research
- Biology, Chemistry, and Physics and Astronomy Faculty
- Especially Laurie McNeil